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Abstract

The extent of wildlife crime is unknown but it is on the increase and has observable effects with the dramatic
decline in many species of flora and fauna. The growing awareness of this area of criminal activity is reflected in
the increase in research papers on animal DNA testing, either for the identification of species or for the genetic
linkage of a sample to a particular organism. This review focuses on the use of species testing in wildlife crime
investigations. Species identification relies primarily on genetic loci within the mitochondrial genome; focusing on
the cytochrome b and cytochrome oxidase 1 genes. The use of cytochrome b gained early prominence in species
identification through its use in taxonomic and phylogenetic studies, while the gene sequence for cytochrome
oxidase was adopted by the Barcode for Life research group. This review compares how these two loci are used in
species identification with respect to wildlife crime investigations. As more forensic science laboratories undertake
work in the wildlife area, it is important that the quality of work is of the highest standard and that the
conclusions reached are based on scientific principles. A key issue in reporting on the identification of a particular

aid in the reporting of results.

species is a knowledge of both the intraspecies variation and the possible overlap of sequence variation from

one species to that of a closely related species. Recent data showing this degree of genetic separation in
mammalian species will allow greater confidence when preparing a report on an alleged event where the
identification of the species is of prime importance. The aim of this review is to illustrate aspects of species testing
in wildlife forensic science and to explain how a knowledge of genetic variation at the genus and species level can

Scope of wildlife crime

Wildlife crime takes many forms from trafficking in live
specimens, hunting out of season, cruelty to animals,
habitat destruction, poaching for meat, poaching for tro-
phies, poaching to use animal parts in medicines, horns
and tusks used for jewellery and ornaments - the list
goes on. The scope of wildlife crime covers a wide
range of diverse crimes and for this reason many news-
paper articles, as well as journal papers, will often cite
figures such as:

‘The illegal trade in wildlife is a $20 billion a year
industry, second only to trade in illegal drugs’.

The monetary figure will often range between 6 and
20 billion US dollars a year and the figure is often cited
to Interpol [1]. However, Interpol have confirmed that
this statement did not come from them. While this
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seems to be a fabricated figure, it is difficult to estimate
the exact amount of illegal trade as there are not the
same international surveillance teams that are used for
drug enforcement for the prosecution of offences invol-
ving wildlife. Organized crime has not been proven to
be linked to wildlife crime but there are indications that
this is the case [2]. Another influencing factor in wildlife
crime is that there is a high financial return with little
chance of being caught and, even if the perpetrators are
caught, the penalties are light. Rarely does the maximum
penalty for the alleged event meet the potential financial
gains [3].

According to a recent census by the World Wildlife
Fund only 3200 tigers (Panthera tigris spp.) exist in the
wild [4]. This is a reduction of over 90% in the last cen-
tury which has lead to more tigers existing in captivity
in Texas than exist worldwide in the wild. Similarly, the
population of black rhino (Diceros bicornis) decreased
by 96% between 1970 and 1992 [5]. In 1970, it was esti-
mated that there were approximately 65,000 black

© 2011 Linacre and Tobe; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:adrian.linacre@flinders.edu.au
http://creativecommons.org/licenses/by/2.0

Linacre and Tobe Investigative Genetics 2011, 2:2
http://www.investigativegenetics.com/content/2/1/2

rhinos in Africa - but, by 1993, there were only 2300
surviving in the wild. Intensive anti-poaching efforts
have had encouraging results since 1996. The numbers
of black rhino have been recovering and still are increas-
ing very slowly; there are now an estimated wild popula-
tion of 4420.

The above examples illustrate the affect of trade on
the numbers for the tiger and rhino populations. The
biological material that is traded is not the whole animal
but body parts such as skin, bone or powdered horn.
Other examples of mammalian species that are part of
the illegal trade in wildlife include elephant ivory [6-10],
bear bile [11] and deer products [12-14]. Mammalian
species are high profile in the public perception but the
trade in reptiles and amphibians is much higher, partly
because these species are smaller and therefore easier to
conceal in order to avoid detection [15].

A paradox to the limited prosecutions is the rise in
interest in the forensic community in wildlife forensic
science. There have been reviews of the subject [16-19],
a text book on non-human DNA [20] and on wildlife
forensic science [21]. There are more publications on
non-human DNA in the international journal Forensic
Science International: Genetics than papers on topics
such as single nucleotide polymorphisms, mixtures or
low template DNA typing [22]. Given this interest, it is
noteworthy that there are very few laboratories dedi-
cated to wildlife forensic science; the major exception
being the US Fish and Wildlife Laboratory http://www.
lab.fws.gov in Oregon, USA.

Forensic science relating to wildlife crime

There are two prime issues that are addressed in wildlife
crime and these relate to the phrasing of the different
types of legislation. The first being the ability to identify
a particular species and the second is the ability to
determine whether the biological material can be
assigned with confidence to a particular individual
member of that species. This review focuses on this first
issue.

The reason for determining a particular species is that
many species are listed as being protected both at a
national and international level. There are currently 175
countries that are signatories to the Convention for the
International Trade in Endangered Species of Flora and
Fauna (CITES) - an organization that oversees the
movement of protected and endangered species across
international borders [23,24]. Each member country is
responsible for the implementation of the Convention at
a national level. National legislation has been enacted in
many countries which is specifically aimed at the pro-
tection of species within their own country. Examples
include the Endangered Species Act 1973 in the USA
[25], which covers alleged crimes at a federal level. Such
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all encompassing legislation may include additions and
amendments, such as the Wildlife and Countryside Act
1981 in the UK [26] with amendments in 1985 [27] and
1991 [28], with further legislation covering deer [29],
seal [30] and badger [31]. Prosecutors are tasked with
investigating any alleged transgression of the legislation
and, hence, require a scientific test in order to identify a
particular species. The test employed depends on the
material seized and the funds available for conducting
the test. As much of the trade in endangered species
originates in countries where funds to enforce any crime
are limited, the prosecution of wildlife crime can be
given a low priority.

Morphology and microscopy are the natural starting
points in identification [32]. This depends on the sample
seized but there is little point in requesting molecular
testing if the material seized is clearly that of a tiger
skin, a section of elephant ivory or a specific shell of a
tortoise. Morphological analysis of parts of an animal, or
even a live specimen, will often have to be undertaken
by a specialist, often from a zoo or a museum. Micro-
scopy of hairs is another skill requiring much experience
in order to be able to identify with a high degree of con-
fidence that the material is, for instance, that of a pro-
tected species such as the Tibetan antelope (Pantholops
hodgsonii), which is protected and CITES listed, com-
pared to those species that are not protected. However,
even with experience, a microscopic comparison of hairs
may not yield a definitive identification. In Moore’s key
for the identification of animal hairs, dog appears in
over 10 categories and most identifications finish in a
group of organisms (for example, camel or dog or llama
group) [33]. Much material that is traded is not in a
condition where species identification can be made by
microscopy or morphology - for instance, the material
may present as powders, potions and oils. Biochemical
and molecular methods using antibodies or DNA are
the tools that can assist with such investigations.

Role of DNA

The application of DNA-based technologies to the
investigation of wildlife crime has opened up the possi-
bility of examining trace material [32]. For instance, in a
case where microscopy was used for the putative identi-
fication of the Tibetan antelope from woven shawls, the
identification to species level can be conducted using
DNA typing [34] where the results are not based on the
subjective judgement of the examiner. One problem is
the associated cost of DNA profiling compared to
microscopy. The DNA-based methods used in wildlife
crime investigations were adapted from those used in
human identification and, in the case of species identifi-
cation, from taxonomic and phylogenetic studies. For
several reasons, the DNA loci used in species testing are
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located on the mitochondrial genome rather than being
nuclear DNA based. Mitochondrial DNA typing has
become a standard process in species testing, allowing
inter-laboratory comparison and permitting a means to
standardize methodologies.

The mitochondrial genome in eukaryotes encodes a
total of 37 genes, 22 of which encode transfer RNA
(tRNA) molecules, two encode ribosomal RNA (rRNA)
molecules and the other 13 encode proteins involved
primarily with the process of oxidative respiration [35].
The number of genes on the mitochondrial genome is
largely invariant for all vertebrate mitochondrial gen-
omes but the order of the genes may alter [36]. The
order of the loci on the mitochondrial genome is the
same within mammalian species but can differ between
taxonomic classes: for instance the order is different
between avian and mammalian mitochondrial genomes.
Vertebrate mitochondrial DNA has two strands of dif-
ferent buoyant densities: the heavy or H-strand and the
light or L-strand. The H-strand is the sense strand for
one protein-coding gene (ND6) and eight tRNA genes.
The L-strand is the sense strand for 12 protein-coding
genes, two rRNA genes and 14 tRNA genes [37].

A major reason for using mitochondrial DNA
(mtDNA) loci is that there is no recombination of
mtDNA. All maternal descendents will have the same
mitochondrial DNA sequence, with the exception of
mutations, and all loci will be linked [38,39]. There is
little DNA on the mtDNA that is non-coding, nor are
there introns or pseudogenes within the mammalian
mtDNA [36]. With all the coding sections of the mito-
chondrial genome coding for proteins or RNA mole-
cules involved in respiration, it would be expected that
there would be conservation of sequence as any change
in the proteins or RNA molecules could adversely affect
the organism. Unlike the nucleus, no error reading
enzyme exists in the mitochondria to correct DNA
bases added incorrectly during DNA replication [40].
Therefore, the accumulation of single base changes is
up to five times higher in mtDNA compared to errors
due to DNA replication in nuclear DNA.

Additionally, there are multiple copies of mitochon-
drial DNA per cell compared to only two copies of
nuclear DNA [41]. Within each cell there are multiple
mitochondria depending on cell type and within each
mitochondrion there are multiple copies of mtDNA
[42]. The result is that there can be many thousands of
mtDNA copies in each cell [42]. Mitochondria have a
protein coat that helps protect the mtDNA from degra-
dation. Highly degraded biological material is therefore
more likely to be amenable to mtDNA typing compared
to the need to generate a DNA profile from nuclear
DNA when typing teeth [43,44], bone [45,46] or hair
shafts [47,48]. Ancient DNA studies have centred on

Page 3 of 9

mtDNA for this purpose with such techniques being
familiar to the forensic science community for identifi-
cation of human remains [49,50]. Similarly mtDNA typ-
ing is used in mass disasters such as 9/11 [51].

Gene loci used in taxonomy

The genetic loci of choice for forensic species identifica-
tion are based on those derived from taxonomic and
phylogenetic studies, and are primarily found on the
mitochondrial genome [52]. Within mtDNA some gene
sequences are thought to exhibit little intraspecific
(within members of the same species) variability, but
show sufficient interspecific (between different species)
variation to allow for an estimation of degrees of relat-
edness and divergence times via calibrated molecular
clocks. The main locus used in taxonomic and phyloge-
netic studies until recently was cytochrome b (cyt b)
[53-55] which occurs between bases 14,747 and 15,887
in human mtDNA [56] and encodes a protein 380
amino acids in length. The cyt b locus has been used
extensively in taxonomic and forensic studies [57-60],
including tiger body parts [61-63], turtle eggs and shells
[64-66], crocodile skins [67], rhino horn [68], elephant
ivory [6], peafowl [69] and bear bile [11,63].

More recently, the use of cytochrome c¢ oxidase I
(COI) has increased owing primarily to its adoption by
the Barcode for Life Consortium http://www.boldsys-
tems.org [70,71]. COI is found between bases 5904 and
7445 in human mtDNA [56]. COI was used initially in
the identification of invertebrate species [72-77]. It soon
became the locus of choice in forensic entomology to
identify the beetle larvae on a corpse [78,79]. As this
one locus could identify these species, it was used more
widely with the aim of being the locus of choice for
identification of all animal species, to the extent that
now the COI locus as a Barcode has been proposed for
many types of organisms [80-87].

Other gene loci on the mitochondrial genome have
been used in species identification. These include the
12S [88,89] and 16S rRNA loci [90] and the NDH family
of genes [91-93]. The D-loop (displacement loop) has
been used less in species identification but more in
intraspecies identification [94,95]. Due to the greater
sequence variation at this non-coding locus, it is now
being used as a tool for identifying the presence of par-
ticular species within mixture of many species [96,97].

Mitochondrial gene loci in species identification

The process of species identification in forensic science is
becoming routine but has not been standardized to one
single locus. Regardless of the locus used, the process is
similar whereby the unknown, or questioned, sample is
analysed by amplifying a section of the gene, predomi-
nantly a section of the cyt b gene or the COI gene.
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This polymerase chain reaction (PCR) fragment is then
sequenced directly and the DNA sequence is compared to
those registered on an open DNA databank such as Gen-
Bank [59]. It is unlikely that there will be a reference sam-
ple from a known species for direct comparison; hence
there is a reliance on DNA sequence data on the database.
GenBank currently has over 108 million sequences (as of
August 2009) and, therefore, there is a high chance that
the unknown sample will match a DNA sequence from a
reference sample deposited on the database. If this is the
case, and there is a 100% homology, then there is confi-
dence that the unknown sample is a member of the spe-
cies to which it matches. Figure 1 shows an example of
the match between a sample taken from a shatoosh shawl,
woven from the fine under hairs of the Tibetan antelope
(P. hodgsonii), to the DNA sequence held on the GenBank
database.

The availability of open access DNA sequence data-
base, such as GenBank, has undoubtedly facilitated
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much scientific research and, in this regard, forensic
science and species identification has also benefited.
Allied to these benefits there is a certain amount of risk
in any investigation, whether forensic or scientific. It is
known that there are misidentified sequences on data-
bases such as GenBank. For example, in a study of
fungi, it was found that as much as 20% of the regis-
tered sequences may be misidentified [98]. DNA
sequences registered with GenBank do not require that
the sample comes from a voucher specimen in the first
instance [99] as some museum samples considered to be
voucher samples have been found to be misidentified
[99]. As museum samples are often used as voucher spe-
cimens for sequences, a misidentified specimen in a
museum may be very well be used as a ‘voucher’ sample
for obtaining sequence data resulting in an erroneous
sequence on the database.

Online and public databases are growing at an almost
exponential rate. As more sequences are added to the

121 131 141
Unknown 1
Pantholops
Ovis
Rupricapra

Capra

182 191 201

Unknown 1

TTGGTTTTACAAATCCTAACAGGCCTATTCCTAGCAATACACTACACATCTGATACAACA
TTGGTTTTACAAATCCTAACAGGCCTATTCCTAGCAATACACTACACATCTGATACAACA
TTAATTTTACAGATTCTAACAGGCCTATTCCTAGCAATACACTATACACCCGACACAACA
TTAATTTTACAGATCCTAACGGGCCTATTCCTAGCAATACACTACACATCTGACACAACA
CTAATTCTACAAATCCTAACAGGCCTATTCCTAGCAATACACTACACATCCGATACAACG

ACAGCATTCTCTTCTGTAACCCACATTTGCCGAGATGTTAACTATGGCTGAATTATTCGA

151 161 171 181

211 221 231 241

Pantholops ACAGCATTCTCTTCTGTAACCCACATTITGCCGAGATGTTAACTATGGCTGAATTATTCGA
Ovis ACAGCATTCTCCTCTGTAACCCACATTTGCCGAGACGTGAACTATGGCTGAATTATCCGA
Rupricapra ATAGCATTCTCCTCTGTAACCCACATTTGCCGAGATGTAAACTACGGCTGAATCATCCGA
Capra ACAGCATTTTCTTCTGTAACACACATTTGCCGAGACGTAAACTATGGCTGAATTATCCGA
la

Pantholops Ovis Rupricapra Capra Unknown 1
Pantholops - 90.00 91.67 90.84 100.00
Ovis 12 - 91.67 90.84 90.00
Rupricapra 10 10 - 88.33 91.67
Capra 11 11 14 - 90.84
Unknown 1 0 12 10 11 -
1b

Figure 1 Figure 1a and b showing a small part of the cyt b gene DNA sequence and their differences for four speciesFigure 1a shows
bases 121 — 241 of the cyt b gene for the Tibetan antelope (Pantholops hodgsonii: accession number AF034724) compared to the mammalian
species with the closest homologies to this part of the sequence; being sheep (Ovis aries: accession AB0068000), the Pyrenean Chamoix
(Rupicapra pyrenaica: accession number AF034726) and a goat (Capra sumatrensis: accession number AY669321). The unknown (or questioned)
sequence comes from a shawl suspected as being from Shatoosh and derived from the Tibetan Antelope. Figure b shows the number of bases
differing between the four species (bottom of the rectangle) and the % similarity over the 120 bases. It would be normal to use over 400 bases
in a similarity search rather than only the 120 as shown above but this indicates the process used in species testing.
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database and, more importantly, more sequences from
the same species are added, it will become easier to
identify and remove misidentified sequences. Examples
of this phenomenon can be seen in domesticated species
(dog, cat, cow, chicken) where there may be up to 100
sequences for the same species for certain gene loci. If
any one sequence is highly variable to all the others,
then this aberrant sequence will be low on the list of
matches. This not only shows the benefit of having mul-
tiple sequence data for the same species but also illus-
trates the potential for a misidentification if there is
only one sequence for a particular species at a particular
locus. In such a case it would be expected that this
sequence would show a high degree of similarity to the
DNA sequence from the next closest taxonomic species
and, at least, the possibility of contamination from
human sequence can be discarded.

If the DNA sequence from the unknown sample
shows a 100% match to the reference sequence for
P. hodgsonii and an 84% match to the next closest
species, there is confidence that the unknown sample is
that of the Tibetan antelope. This confidence that the
questioned sample came from the Tibetan antelope and
not any other species assumes: (1) that all species are held
on the database and there is not another species of the
same DNA sequence yet to be analysed; (2) all members
of the Tibetan antelope have the same DNA sequence as
that registered on GenBank (there is no intraspecies varia-
tion); and (3) the sequence data for the next closest match
(in Figure 1 this is the goat) is also representative for this
species and no members of this species have, by chance,
the same sequence as that of the questioned sample.
These three assumptions affect the confidence of species
identification in any subsequent report.

Until recently, there had been no study to quantify
intraspecies variation within the loci used in species
identification. Such a study would address the above
assumptions and provide a value for the confidence
associated with a 100% match. It would also address the
problem associated with a 99% or less match, in order
to determine if any sequence variation could be due to
intraspecies variation.

In the case of cyt b and COJ, it is generally the prac-
tice to amplify a section of the genes for sequence ana-
lysis. Further, many of the samples examined are from
material that may be at trace level, have many inhibitors
to the PCR process present and be highly degraded. In
the case of cyt b the section of the gene used is, typi-
cally, the first 400 bases [54,100-102] and in the case of
COI a fragment of approximately 600 bases is used and
no less than 500 base in length [103].

The primer sets that amplify a section of the cyt b gene
were initially used by Pddbo et al. [101] and adapted
by Kocher et al. [104] and later by Hseih et al. [100].
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These primer sets were originally designed based on the
human mitochondrial sequence [56,101]. Only later were
they aligned with many cyt b gene DNA sequences and it
was determined that there was high homology for many
species. The aim was to develop a primer pair that would
work on most, if not all, species regardless of their taxo-
nomic order. Validation studies were based predomi-
nantly on using the primer sets to amplify numerous
samples, sequence the PCR product, and compare to
either sequence data on GenBank or from in-house
sequence data. The universal primer sets for COI were
designed by Folmer et al. [105] before being adopted by
the Consortium for Barcode of Life.

Cyt b and COI intraspecific and interspecific
variations

For some time there has been a debate as to which of
the cyt b or COI loci is the best gene for forensic spe-
cies identification [106]. Advocates for each gene claim
that their gene is better at identification of species but,
until recently, there have not been any studies that
could apply statistical confidences to sequence
comparisons.

There are suggestions as to the levels of interspecific
and intraspecific variation that should be expected given
for each gene [82,107]. These values are generally based
on a Kimura 2-parameter model (K2P) where the esti-
mation of the number of nucleotide substitutions per
site takes into account the different rates of transitions
and transversions [108].

When the K2P model is used, authors generally state
that intraspecifc variation is in the range of < 2-3%
(7.93% between and 0.43% within bird species for COI
[82]; 5.7% between and 1.5% within Stenella species for
cyt b [54]). When anomalies arise these are interpreted as
hidden or cryptic species [82], although these cryptic spe-
cies may be based on levels of intraspecific variation from
as few as two individuals [109]. This particular example
relates to a study on North America bird species.

A study by Kartavtsev and Lee [110] investigated the
nucleotide diversity between cyt b and COI at the popu-
lation, genus and species levels. They analysed a wide
range of vertebrate and invertebrate species but did not
separate their results into different Classes and amalga-
mated all results. They determined that the closer any
two samples were based on taxonomy, the closer they
would be genetically, based on p-distance (similar to
K2P but there is no distinction between the probabilities
for transitions or transversions; Figure 2) [110].

The study by Kartavtsev and Lee [110] shows that
suggested values for both genes appear to be correct.
However, it is clear to see that there is overlap within
COI of intraspecific variation and interspecific variation
with sibling species (Figure 2).
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been adapted from that of Kartavtsev and Lee [108].

Comparison groups

Figure 2 An illustration of the variation on the P distances for both the cyt b (in black) and the COI (in red) gene loci using different
taxonomic animal groups. Group 1 is variation within a species; group 2 is variation between sibling species; group 3 is variation between
species within the same genus; and group 4 is the variation between species of different genera but within the same Family. The central square
indicates the mean, the larger box the standard error (SE) £ 1.00 and the bars either side of the boxes represent the SE + 1.96. This graph has

3 4

A recent study by Tobe et al. [106,111], investigating
only the Class Mammalia, refined these results further
(for that Class) and derived a method to assign statisti-
cal confidence to sequence comparisons. In this study,
the cyt b and COI gene sequences were compared for
217 different Mammalian species to assess interspecific
variation and 945 human, 130 domestic cattle and 35
domestic dogs to assess intraspecific variation [111].
These data indicated a gap between the greatest
observed intraspecific variation (1.5%) to the closest
interspecific variation (2.5%), based on K2P values.
A threshold can be applied given these data of a predicted
maximum inter and intraspecific variation [111]. Both
gene comparisons contained K2P values falling below
1.5% - 2.5% that, according to the sequence data,
belonged to separate species, but these tended to be
between sub-species or species with debated taxonomy
[111].

By combining all data sets together close to 1 million
K2P comparisons were made. As all sequence informa-
tion was known, those comparisons between species and
within species was known. From that data, Tobe et al.
[111] were able to determine the rates of true positives,

true negatives, false positives and false negatives at three
different threshold values. Their results indicated that
although both genes are similar in their discriminating
power to separate species, cyt b performed better than
did COI [111]. A K2P threshold of 1.5 showed that for
COI the false positive rate was 4.85 x 107 and the posi-
tive predictive value was 0.9995, whereas for cyt b the
false positive rate was 2.02 x 10™* and the positive pre-
dictive value was 0.9998 [111]. These data indicate that
both loci give a high degree of confidence in identifica-
tion if the data falls within the intraspecific boundary
but that there is an even lesser chance of a misidentifi-
cation using cyt b.

As a further test of the two genes, Tobe et al. [111]
constructed phylogenetic trees using the sequence data
for each gene. They found that, no matter which tree
building method was used, some species were always
misplaced. Overall, the cyt b gene gave a more accurate
reconstruction of Mammalian phylogeny at the Super
Order, Order and Family levels than did COI [111].

Further testing for other Classes of organisms needs to
be undertaken in order that any significance can be
assigned to sequence comparisons. It is likely that the
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levels of intraspecific variation could be much greater in
other, older, classes of organisms such as sharks or
crocodiles.

Reporting of results - current and future

In the absence of knowing about intraspecies and inter-
species variation there is a limit to the confidence that
can be reported as the outcome of a sequencing test to
determine species. Currently, if there is a match with
100% homology between the questioned and reference
sequence, there are two possibilities. Either the ques-
tioned sample is from the species that it matches or it
matches by chance and comes from a species unknown
that just happens to have the same DNA sequence as
the questioned sample.

If there is not a 100% homology to any sequence on
the database but there is a 99.5% homology to a
sequence with two base differences between the two
sequences over a total length of 400 bases and the next
closest species has a 96% homology, then there are two
most likely possibilities. Either (1) the questioned sample
comes from the same species as that with a 99.5%
homology and the differences are due to intraspecific
variation or (2) it comes from an unknown but closely
related species, with a 99.5% sequence match that has
not been documented on the database.

However, many reporting this type of data would con-
sider the possibility of such high intraspecies variation,
such as exhibiting up to 96% similarity for a gene locus
like cyt b or COI, is highly unlikely such that the only
credible alternative is that the questioned sample is that
from the species with the 99.5% homology. This is
merely an assumption and can best be supported by stu-
dies on intraspecific variation.

With knowledge of intraspecific and interspecific var-
iation detailed in the section above, the three scenarios
above can be addressed with a probability. In all mam-
malian species examined there was a clear gap between
intraspecies variation and interspecies variation. A false
positive and false negative figure can be quoted allowing
the confidence that a questioned sample is a member of
the species to which it matches with a 99.5% homology.

The method of species testing is currently based on the
sequence comparison of one mitochondrial locus: predo-
minantly either the cyt b or COI locus. New methods of
DNA sequencing open the prospect of sequencing whole
genomes [112-114]. Any discussion over which of the
two loci is more informative would no longer be valid as,
instead of only 400 bases used in comparisons, 1000s of
bases can be identified and compared. Validation studies
are required in order to ensure that any sequence used in
species identification still permits interspecies identifica-
tion with a clear and unambiguous separation between
one species and the next closest.
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